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ABSTRACT 

 

Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by abnormal 

carbohydrate metabolism, insulin deficiency and subsequent hyperglycemia. Complications arise 

with poor glycemic control leading to the onset of microvascular and macrovascular diseases. 

Advanced glycation end products (AGEs) associated with hyperglycemia infiltrate microvascular 

tissues, ultimately leading to vascular disease of the nervous system, eyes and kidneys.1 Diabetic 

nephropathy is the leading cause of chronic kidney disease.2 The severity of this autoimmune 

disease is therefore independently and dependently associated with numerous pathologies such 

as cardiovascular disease, vitamin D deficiency and impaired one-carbon metabolism.  

CKD is characterized by structural and functional changes of the glomerulus and renal 

tubules, which results in impaired filtration and reabsorption of various proteins and nutrients 

involved in methyl group metabolism and vitamin D metabolism. Declining glomerular filtration 

associated with renal disease is associated with hyperfiltration of vitamin D binding protein 

(DBP) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), disrupting vitamin D status and decreased 

homocysteine clearance and subsequent plasma homocysteine elevation.3-5 Understanding the 

mechanisms that mediate methyl group supply and homocysteine regulation is imperative in the 

prevention and treatment of these interrelated chronic diseases.  

 Alterations in key regulatory proteins within one-carbon metabolism have been observed in 

type 1 diabetes as compensatory mechanisms for disturbed homocysteine levels and methyl 

group supply. Previous research has demonstrated normalization of glycine N-methyltransferase 

(GNMT) and other regulatory proteins associated with administration of insulin, glucocorticoids 

and retinoic acid (RA). These results indicate the potential role of hormonal modulation in 
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regulating one-carbon pathways.6 In addition, we have implemented the use of resistant starch 

(RS) in our laboratory as a therapeutic dietary agent for glycemic control in diabetes. In these 

studies, we have demonstrated the ability of RS to prevent and/or alleviate many DM-related 

complications including weight loss, hyperglycemia and diabetic nephropathy. In addition, RS-

treatment normalized gene expression of proteins involved in vitamin D metabolism.  

 These results have illustrated the protective effect of RS in diabetes, specifically related to 

diabetic nephropathy and associated perturbations in vitamin D metabolism. The goal of this 

study was to investigate the effect of dietary RS in preventing/attenuating abnormalities related 

to diabetes perturbed methyl group metabolism. Furthermore, this study aimed to explore the 

possibility of RS and glucose as potential hormonal and nutritional modulators in methyl group 

metabolism using a streptozotocin (STZ)-induced model of T1DM.   
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CHAPTER 1: LITERATURE REVIEW 
 

Introduction to Type 1 Diabetes Mellitus 

Type 1 diabetes mellitus (T1DM) is a complex autoimmune disease that manifests from a 

combination of genetic, epigenetic and environmental factors.7 This disease is characterized by 

abnormal carbohydrate metabolism and subsequent hyperglycemia due to pancreatic beta (β) cell 

dysfunction and insulin deficiency.8 Traditionally referred to as juvenile diabetes, the highest 

incidence of this disease occurs in children between the ages of 5 and 9 years old.9 While this 

disease occurs most commonly in adolescents, diagnosis of this autoimmune disease is rising 

among all age groups.10 According to the World Health Organization, 180 million individuals are 

living with diabetes and approximately 5-10% (18 million) have T1DM.11  

Carbohydrate metabolism and insulin secretion 

T1DM is a disease that targets the endocrine portion of the pancreas. Pancreatic cells 

pertinent to this autoimmune disease are the β cells within the islet of Langerhans. The islet cells 

are responsible for secreting insulin in response to carbohydrate ingestion, glucose absorption 

and glucose uptake into the pancreas via GLUT transporters. Insulin secretion occurs in two 

separate phases: 1) the triggering pathway and 2) the amplifying pathway . In a positive energy 

state or post-absorption, glucose is transported into the pancreatic β cells by glucose transporters 

(GLUT1 in humans, GLUT2 in rodents) via facilitated diffusion. Glucose is committed to 

various energy pathways, generating adenosine triphosphate (ATP) from glycolysis, Kreb’s cycle 

and the electron transport chain (ETC).12 

Glycolytic enzyme glucokinase (GK) and ATP contribute to pancreatic β cell signaling for 

insulin secretion. Insulin release by the islet cells may be governed by GK, as it participates in 
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the rate-limiting step in the glycolytic energy pathway.13 This enzyme is essential for committing 

glucose to it’s phosphorylated form, for it’s metabolism through glycolysis, the Kreb’s cycle and 

oxidative phosphorylation by the ETC. For this reason, GK is considered a “pacemaker” for a 

variety of metabolic reactions, taking substrate glucose and generating products such as 

pyruvate, lactate, oxaloacetate, citrate, malonyl-CoA, CO2, H20 and ATP.13,14 

Insulin secretion is stimulated by a series of reactions following the generation of ATP by 

these energy pathways. The electron flux produced in the ETC paired with the increased 

ATP/ADP ratio stimulates a rapid change in mitochondrial membrane potential.15 ATP-sensitive 

potassium (K+) channels are modulated by ATP and close in response to higher levels of this 

metabolic end product. Depolarization of the pancreatic β cell triggers the opening of voltage-

dependent calcium (Ca2+) and sodium (Na+) channels, causing a dramatic influx of Ca2+ and 

Na+.12 

Increased concentrations of intracellular Ca2+ signals soluble N-ethylmaleimide-sensitive 

factor attachment protein receptor (SNARE) protein complexes to initiate the translocation of 

insulin-containing secretory vessels to the cellular membrane.16 This results in exocytosis of 

insulin into the bloodstream for glucose homeostasis.15 This event is classified as the triggering 

pathway or the 1st phase of insulin secretion, occurring within the first 10 minutes following 

glucose uptake and beta cell stimulation.16,17 Researchers have proposed that each insulin-

secreting phase utilizes a specific set of insulin granules, the readily releasable pool (RRP) and 

storage-granule pool. Insulin granules docked on the cellular membrane of the β cell are thought 

to be reserved for immediate release during the 1st insulin-secreting phase following glucose 

uptake, while majority (>95%) of insulin granules reside in the intracellular storage pool.12,15,16,18

 Researchers have proposed that the second insulin-secreting phase is initiated by specific 



www.manaraa.com

	  
	  

3	  

amplifying pathways that generate products such as GTP, NADPH, Malonyl CoA, LC Acyl-CoA 

and Glutamate.12,17 The insulin storage-pool is stimulated by these pathways, causing the 

translocation of granules to the cellular membrane. This reserve pool is converted to the RRP and 

stimulated by the depolarized nature of the β cell. Insulin is then released during the second 

insulin-secreting phase. Biphasic insulin secretion allows for both a rapid and steady release of 

insulin into the bloodstream. Hormone insulin binds to insulin receptors throughout circulation, 

signaling GLUT transporters for glucose absorption. GLUT transporters are recruited from the 

intracellular pool and undergo translocation to the cellular membrane for glucose uptake. 

Therefore, insulin is a fundamental part of blood glucose homeostasis.12 This mechanism 

progressively declines with diabetes onset.  

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1.1: Mechanism of glucose absorption and biphasic insulin secretion in beta cells. Glucose enters the 
islet cell via facilitated diffusion for catabolism and ATP production. Depolarization of the cellular membrane by 
ATP and catabolic electron flux leads to the fusion of insulin granules to the membrane for insulin secretion. This 
event occurs in two separate phases characterized by the location of insulin granules to the cellular membrane. 12 
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Etiology 

T1DM manifests from a combination of genetic, epigenetic and environmental factors. 

Recent studies have investigated >50 genetic polymorphisms related to the development of 

T1DM.19 Individuals may possess particular alleles or mutations of the following genes most 

associated with the development of this chronic disease: human leukocyte antigen (HLA), 

insulin, protein tyrosine phosphatase 22 (PTPN22), interleukin-2 receptor (IL2Ra) and cytotoxic 

T-lymphocyte antigen 4 (CTLA4). These susceptibility genes are not sole determinants in 

disease development.20 Research suggests the development of T1DM is dependent on a 

combination of factors including age, family history, genetic susceptibility markers, number of 

autoantibodies and environmental triggers.19  

Longstanding research suggests the greatest genetic influence in T1DM development stems 

from two chromosomal regions: HLA and the insulin gene.21,22 A specific locus found in the 

HLA class II genes on chromosome 6p21 or insulin-dependent diabetes mellitus locus (IDDM1) 

was confirmed as a primary susceptibility gene related to the onset of various autoimmune 

diseases including T1DM. Specifically, recent studies have associated 30-50% of T1DM cases 

with the presence of HLA type II genotypes (MHC Complex).19 While particular haplotypes of 

this gene are considered predisposing alleles, others have been found to be protective in nature. 

HLA-DQB1*0201 and/or HLA DQB1*0302 are associated with T1DM development, whereas 

DRB1*15011, -DQA1*0102, and -DQB1*0602 haplotypes have the strongest negative 

association with the disease.23-25 Predisposing HLA haplotypes may increase the risk of T1DM 

development by up to 55% in adolescents.19 However, the protective alleles are capable of 

“silencing” the high-risk alleles, even in the presence of islet cell antibodies.26 
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Individuals with first-degree relatives that possess the highest risk haplotype have >20% risk 

for T1DM development, while those with no known first-degree relatives with T1DM have a 2% 

risk.19 Individuals that share high-risk HLA genotypes with a diabetic sibling have an 80% risk 

for immunity (IA) and a 60% increased risk for T1DM development. Genetically susceptible 

individuals are particularly vulnerable to environmental triggers that preempt diabetes onset and 

lead to the production of islet autoantibodies (IAA).20 Presence of two or more autoantibodies 

may dramatically increase risk for T1DM, regardless of genetic susceptibility or family history.19 

Researchers have discovered a modest relationship between the insulin gene and T1DM 

compared to the HLA locus.19 Variable number tandem repeat (VNTR) polymorphisms located 

on the promoter region of the insulin gene on chromosome 11 may be involved in the regulation 

of insulin expression in the thymus.20 PTPN22, IL2RA and CTLA-4 susceptibility genes mediate 

Thymus cell (T cell) regulation and other immune related processes.27 Polymorphisms of these 

genes can result in alteration of T cell function, affecting a variety of autoimmune diseases such 

as T1DM, rheumatoid arthritis, celiac disease and Crohn’s disease.19  

Researchers have recently investigated the severity of risk related to the presence of one or 

more of the previously mentioned polymorphisms. In a recent study, researchers worked with a 

combination of different loci including HLA class II genes, insulin gene, PTPN22 and CTLA4. 

Results revealed that the presence of these particular alleles posed a very high risk for T1DM 

development. However, the likelihood of an individual possessing all susceptibility genes is very 

low. Researchers concluded that the presence of high-risk alleles paired with a family history of 

T1DM leads to an increased hazard ratio (HR) for IA and progression of T1DM.19 

While these susceptibility genes can increase an individual’s risk for T1DM development, 

research strongly suggests disease onset involves an environmental trigger or a combination of 
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several. Detectability of this autoimmune disease begins with the presence of four major 

autoantibodies including insulin (IAA), glutamic acid decarboxylase (GADA), the tyrosine 

phosphatases: insulinoma-associated protein 2 (IA-2) and insulinoma-associated 2B (IA2B), and 

zinc transporter 8 (ZnT8A).28 Exposure to specific environmental factors is thought to trigger the 

diabetic autoimmune response. This leads to the progressive destruction of β cells, infiltration of 

IAA into the pancreas causing insulinitis and subsequent perturbation of carbohydrate 

metabolism and hyperglycemia.20 Disease manifestation is variable, lasting up to several years 

before symptoms are clinically diagnosed.  

Several viruses have been linked to T1DM onset but there is insufficient evidence to support 

a causal relationship.20 The most common viruses associated with the development of T1DM are 

enteroviruses or coxsackieviruses. Researchers have proposed that Coxsackievirus B4 (CVB4) 

target β cells and cause insulinitis in genetically susceptible mice.20 Similar evidence was found 

in children that were previously infected with the virus and later developed T1DM. Other 

research studies have reinforced this positive correlation, finding the presence of enteroviruses in 

44 of 72 (approximately 60%) recently diagnosed T1DM patients and only 3 of 50 control 

participants.20 Congenital rubella syndrome and T1DM are positively correlated as evidenced by 

various research studies. Proposed mechanisms suggest that the infection inhibits β cell growth 

and/or increases susceptibility for DM-associated predisposing HLA haplotypes in children.20 

Collective results investigating viral environmental triggers are inconsistent, illustrating the 

variability associated with autoimmune diseases. Ongoing research is being conducted to 

investigate factors such as the amount of time between viral infections and disease onset and the 

presence/absence of insulinitis or autoantibodies prior to viral infection. While a virus may 

trigger the immediate progression of T1DM, researchers also suggest that viruses play a dormant 
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role, initially affecting gut mucosa and later translocating to the pancreas to cause the 

autoimmune event prior to T1DM onset.20 Further research must be conducted to better 

characterize these relationships.  

Researchers are also investigating the role of gut microbial balance and T1DM onset. The 

alteration of microbiota via antibiotics and probiotics may change the immunological tolerance 

of the gut, which may alter the integrity of the immune system and increase an individuals risk 

for autoimmune diseases including T1DM.20 Interestingly, researchers are finding that while gut 

microbiota may play a role in the development of this T1DM, it may also be important in the 

treatment of this autoimmune disease.20 Proposed environmental triggers related to T1DM are 

plentiful, including viruses, bacteria and nutritional components such as cow’s milk, wheat 

proteins, meat nitrites/nitrates and vitamin d. It is unknown whether these factors work together 

or alone in stimulating disease progression. 

 

 

 

 

 

 

 

 

 

Figure 1.2: Factors leading to β  cell failure in type 1 diabetes mellitus onset. Symptoms leading to clinical 
presentation of the autoimmune disease.29  
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Type 1 diabetes onset 

 Researchers have proposed many hypotheses regarding the process of T1DM onset and 

disease development. The most widely accepted is named the linear β-cell decline hypothesis, 

presented by Eisenbarth in 1986. This model illustrates the presence of genetic susceptibility 

markers and an environmental trigger, leading to the production of IAA, insulinitis and 

progressive loss of β cell mass (Figure 1.2). This event eventually leads to clinical onset as 

identified by uncontrolled hyperglycemia and other characteristic diabetic symptoms. 12  

Beta cell mass describes the number and size of these pancreatic cells. In normal 

individuals, β cell mass progressively increases from birth and throughout adolescence, reaching 

peak mass in early adulthood and then declining with age. Diabetic individuals experience a 

more rapid decline in β cell mass in conjunction with IAA production and insulinitis, most often 

at a younger age. Clinical diagnosis occurs after the loss of 70-80% of β cell mass. The timeline 

for disease manifestation is largely variable, progressing over a period of months to several years 

depending on the individual. Clinical onset is determined by the presence of uncontrolled fasting 

blood glucose and other symptoms of T1DM including polyuria, polydipsia, polyphagia, weight 

loss, fatigue, and ketoacidosis in severe cases.12  

 β cell death occurs following an autoimmune reaction that may be initiated by viral 

infections or inflammation causing endoplasmic reticulum (ER) stress in the pancreas. Beta cell 

apoptosis may then cause secretion of β-cell antigens, tumor necrosis factor alpha (TNFα) and 

interferon (IFN-γ). The release of these antigens from necrotic β cells stimulates antigen-

presenting cells (APC’s) to activate naïve T cells in the pancreatic lymph nodes. Active T-cells 

will then remain in the islet cells of the pancreas, releasing inflammatory cytokines and 

contributing to pancreatic insulinitis upon reexposure to these β cell antigens. Inflammatory 
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cytokines stimulate transcription factors nuclear factor kappa beta (NFχβ) and signal transducer 

and activator of transcription 1 (STAT-1). This process causes ER stress, amplified release of 

cytokines and disruption of proteins responsible for regulating insulin production and secretion.12 

Research also suggests that islet cells are more vulnerable to oxidative stress in comparison to 

other bodily tissues. Circulating cytotoxic free radicals and nitric oxide (NO) may contribute to 

islet cell damage.30,31 Collectively, this process seems to be a cycle of reactions leading to the 

progressive destruction of pancreatic β cells, insulinitis and development of type 1 diabetes.12  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 1.3: Autoimmune response and β  cell apoptosis. Induction and progression of insulitis and loss of beta 
cell mass by an autoimmune inflammatory cascade12 
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Clinical symptoms and disease complications  

Increased presence of autoantibodies normally precedes the diagnostic symptoms associated 

with T1DM, with autoantibodies present in 85-90% of patients upon diagnosis.32 Clinical 

diagnosis of T1DM is characterized by elevated fasting blood glucose (FBG; >126 mg/dL) 

caused by impaired insulin secretion and abnormal carbohydrate metabolism. Synthetic insulin 

administration is needed in order to keep blood glucose in homeostatic conditions (70-100 

mg/dL)33 and prevent common symptoms of diabetes seen in newly diagnosed patients. 

Uncontrolled hyperglycemia can lead to various clinical indicators including polyuria, 

polydipsia, polyphagia, weight loss and diabetic ketoacidosis in severe circumstances.32 When 

blood glucose exceeds the renal “glucose load” of 180 mg/dL, glucose spills over into the urine 

causing osmotic diuresis. Water and other solutes move from a lower concentration to a higher 

concentration, following large glucose molecules to be excreted as urine. Polyuria or increased 

urinary excretion and elevated excretion of solutes lead to dehydration and increased thirst 

(polydipsia). Research consensus has deemed weight loss, polyuria and polydipsia the most 

common symptoms associated with T1DM onset.34   

Aberrant carbohydrate metabolism forces the body to revert to other energy pathways to 

maintain body functioning, such as gluconeogenesis and lipolysis. The breakdown of 

triglycerides to free fatty acids leads to rapid weight loss and increased hunger (polyphagia).35 

Prolonged hyperglycemia and dependence on lipolysis metabolism can lead to the accumulation 

of acetyl-CoA, leading to ketone production and elevated ketone bodies in the blood and urine. 

Diabetic ketoacidosis (DKA) is characterized by low blood pH, with a pH 7.1-7.35 or plasma 

bicarbonate 10-21 mmol/L classifying mild to moderate DKA and a pH of <7.10 and plasma 



www.manaraa.com

	  
	  

11	  

bicarbonate <10 mmol/L classifying severe DKA.34 Presence of DKA can dramatically increase 

an individual’s risk for neurological damage, hyperglycemic coma or death.  

Synthetic insulin administration is the primary treatment utilized by T1DM patients to keep 

blood glucose at homeostasis and allow for normalized metabolism. Prolonged uncontrolled 

hyperglycemia can lead to a multitude of adverse health effects including both microvascular and 

macrovascular complications. Hemoglobin AIC is a standard biomarker used to assess long-term 

glycemic control, aiding in diabetes management and prevention of complications.32 The primary 

microvascular complications associated with this disease are diabetic retinopathy, nephropathy 

and neuropathy.  These complications are preceded by biomarkers and structural changes such as 

increased excretion of albumin (microalbuminuria) and declining glomerular filtration rate 

(GFR), renal hypertrophy, declining autonomic nervous system function and altered retinal 

microvasculature.36 

  Chronic hyperglycemia can drastically alter the extracellular and intracellular structure and 

function of many body tissues. Uncontrolled blood glucose leads to the formation of advanced 

glycation end products (AGEs) when glucose molecules target nucleic acids, lipids and proteins 

causing glycation and oxidation of these macromolecules. AGEs accumulate in vascular tissues 

and are therefore indicative in the pathophysiology of microvascular and macrovascular 

complications associated with diabetes.1 These compounds are capable of altering intracellular 

protein function, disturbing gene expression, releasing pro-inflammatory cytokines and free 

radicals and irreversibly modifying the extracellular matrix.37  

AGEs form reactive oxygen species (ROS), which bind to cellular receptors to initiate cross-

linking at the extracellular matrix (ECM). AGEs may form cross-links with large matrix 

molecules such as collagen and elastin, causing increased surface area of the matrix and a more 
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rigid vasculature. Accumulation of AGEs can trigger the receptor for advanced glycation end 

products (RAGE), which increases endothelial permeability to larger solutes in the vasculature.1 

RAGE also targets smooth muscle cells, macrophages and proteins related to low-density 

lipoprotein (LDL) oxidation. Collectively, these alterations contribute to the formation of 

atherosclerotic lesions, rigidity of arterial walls, decreased elasticity of blood vessels, and 

therefore increased risk for atheromas and myocardial infarction.38 These structural changes 

increase the incidence of hypertension (HTN) and together characterize cardiovascular disease 

(CVD).   

Diabetic retinopathy is characterized by structural changes to the retinal basement 

membrane, vascular occlusion and hyperpermeability of capillaries causing vascular leakage 

associated with the accumulation of AGEs. Diabetic retinopathy is the leading cause of 

blindness, while also contributing to cataract formation, microaneurysyms and hemorrhages. 

Diagnostic symptoms of diabetic neuropathy include pain or numbness of extremities and 

declining nerve and sensory motor function. Myelin is vulnerable to glycation by AGE’s in 

uncontrolled diabetes, causing demyelination in addition to nerve conduction occlusion.36 

Diabetic nephropathy is the primary cause of renal failure and is characterized by declining 

GFR, thickening of the glomerular basement membrane and proteinuria.2 Accumulation of AGEs 

in the renal vasculature contributes to the structural and functional changes of the glomerulus by 

stimulating the release of growth factors that initiate synthesis of collagen and other ECM 

proteins. The progressive thickening of the basement membrane eventually leads to renal 

filtration dysfunction, HTN and kidney failure. Structural damage to the nephrons paired with 

increased vascular permeability leads to hyperfiltration of small molecular weight proteins such 

as albumin and many other nutrients.5 



www.manaraa.com

	  
	  

13	  

Declining GFR is associated with a multitude of adverse health effects including HTN, 

anemia, malnutrition, bone disease, neuropathy and CVD. Declining GFR and proteinuria 

(microalbuminuria/macroalbuminuria) are used to identify the progression of diabetic 

nephropathy or chronic kidney disease (CKD) to renal failure.37 These biomarkers are indicative 

of renal function and widely used in classifying the severity of chronic kidney disease by 

appropriate stages. Albumin is a large circulating protein, used as a sensitive biomarker for 

various disease states including malnutrition, diabetes, glomerular disease and HTN. Creatinine 

is an additional biomarker used widely to assess GFR and CKD appropriately. The ratio of 

albumin:creatinine is highly predictive in renal disease classification, with a ratio of >30 mg 

albumin/1 g of creatinine indicating kidney damage as a result of poor glycemic control and 

disease progression.39,40  

Urinary albumin excretion (UAE) is classified as microalbuminuria at 20-200 µg/min and 

macroalbuminuria at ≥200 µg/min.41 Albuminuria is present during the early stages of CKD with 

GFR between 60-90 mL/min/1.73 m2. Moderate (stage 3) to severe (stage 4) CKD is classified 

by a GFR of 30-59 and 15-29 mL/min/1.73 m2, with renal failure occurring when GFR falls 

below 15 mL/min/1.73 m2.42 Normal serum creatinine concentrations are between 0.8-1.4 mg/dL 

in men and 0.6-1.2 mg/dL in women, with creatinine levels between 1.3-3.0 mg/dL indicating 

diabetic nephropathy.2,43 Collectively, GFR and related proteins are used regularly to determine 

disease severity in order to develop and implement appropriate pharmaceutical and behavioral 

treatment methods for diabetic patients.  

Diabetes is the leading cause of CKD, with approximately 40% of diabetic individuals 

progressing from diabetic nephropathy to CKD and end stage renal failure (ESRF).41 CKD and 

subsequent HTN are strongly associated with CVD, presenting an increased risk for stroke, 
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peripheral artery disease, coronary heart disease, atrial fibrillation and heart failure. CVD 

mortality is inversely related to GFR or severity of renal impairment, accounting for 58% of 

deaths in CKD patients in a Canadian cohort study and 71% of deaths in a Taiwanese cohort.5 

 Mechanisms linking CKD and CVD are plentiful and many are independent of HTN, 

diabetes and other traditional risk factors. Researchers postulate that left ventricular hypertrophy 

(LVH) associated with HTN, renal anemia, vascular rigidity and underexpression of coronary 

endothelial regulatory proteins, may be responsible for increased CVD risk. LVH can lead to 

reduced cardiac reserve and impaired myocardial contractility, which may be attributed to 

impaired coronary dilation and reduced capillary density.44  

Other factors leading to CKD-associated heart disease include dyslipidemia, inflammation, 

metabolic byproducts and alteration of the renin-angiotensin system.44 CKD-induced 

dyslipidemia results from secondary hyperthyroidism and perturbed gene regulation in lipid 

metabolism, resulting in downregulation of lipoprotein lipase, upregulation of lipase inhibitor 

Apolipoprotein C-III and reduced catabolism and clearance of lipoproteins. The disruption of 

low-density lipoprotein (LDL) receptor and acyl-coenzyme A cholesterol acyltransferase 

(ACAT) has also been correlated with the impaired lipid metabolism and accumulation of LDL-

cholesterol in the serum. Together, these alterations lead to LDL oxidation in blood vessels, 

leading to the inflammatory cascade that preempts the formation of atheromas.45  

Increased oxidative stress is characterized by elevated levels of ROS and is associated with 

the accumulation of AGEs in diabetes and activation of the renin-angiotensin system in CKD.46 

Angiotensin II stimulates enzymatic systems such as NADPH oxidase, generating ROS, 

inflammatory cytokines and chemokines, and other molecules involved in the atherosclerotic 

inflammatory cascade.5 Circulating ROS directly affects endothelial function, resulting in 
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functionality changes and hyperpermeability of the vascular endothelium. This allows for the 

passage of LDL molecules into the blood vessels for lipid oxidation, further stimulating 

inflammatory processes and the formation of atherosclerotic lesions.46  

CKD can lead to various health effects aside from CVD, including anemia, bone and 

mineral disease and malnutrition.47 Declining renal function causes hyperfiltration of proteins 

and other nutrients such as vitamin D. Increased urinary excretion of 1,25-dihydroxyvitamin D3 

(1,25(OH)2 D3; calcitriol), the major circulating form of this nutrient, leads to decreased calcium 

absorption and subsequent hypocalcemia, secondary hyperparathyroidism and renal 

osteodystrophy.48 The role of vitamin D associated with T1DM is extensive, as deficiency of this 

nutrient may associate with disease onset and/or be affected by the disease itself.  

Introduction to Vitamin D 

Vitamin D deficiency is associated with many pathologies including CVD, osteoporosis and 

other adverse bone diseases, cancer, neurological disorders, CKD and autoimmune diseases. A 

multitude of research has been geared toward understanding the relationship between vitamin D 

deficiency and these known pathological conditions.49 Current literature supports the link 

between vitamin D deficiency and T1DM. Interestingly, research has investigated two scenarios 

regarding this relationship. Does the autoimmune disease cause vitamin D deficiency or does the 

nutrient deficiency exacerbate the autoimmune event that leads to the onset of this disease? 

Vitamin D and its immunomodulatory role in type 1 diabetes progression 

Vitamin D plays an immunomodulatory role in the prevention of this autoimmune disease as 

evidenced by the presence of the vitamin D receptor (VDR) in APC’s, active T cells and 

pancreatic β cells. Studies using a non-obese diabetic (NOD) model of T1DM, found that 

vitamin D deficient mice were more likely to develop the disease. The autoimmune event was 
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exacerbated in mice that were vitamin D deficient earlier on, suggesting that nutrient 

homeostasis may be imperative during childhood, especially in individuals with genetic 

predisposition to the disease. Additionally, vitamin D supplementation in NOD mice reduced the 

severity of symptoms characteristic of the diabetic state, preserved β cell function and 

prevented/attenuated clinical onset.48,50,51 While many studies have shown supplementation to be 

beneficial, others have proven these positive effects are only achievable if the rodent or 

individual is initially vitamin D deficient. 

  The mechanism by which vitamin D deficiency stimulates T1DM progression involves a 

variety of processes regulated by VDR in the pancreas and 1,25 (OH)2D3 throughout the immune 

system. 1,25 (OH)2D3 exhibits protective effects in the pancreatic islet cells, inhibiting the 

production of inflammatory cytokines and chemokines, increasing regulatory immune cells, 

decreasing T cell activation and infiltration and downregulating MHC II proteins involved in 

cytotoxic T cell recruitment. Additionally, 1,25 (OH)2D3 prevents beta cell apoptosis through 

several mechanisms including 1) downregulation of A20 protein gene related to NO production 

and the subsequent production of inflammatory factors 2) stimulation of dendritic cell turnover, 

preventing differentiation and maturation into APC’s that preempts the autoimmune event 

observed T1DM onset and 3) direct inhibition of IL-6 inflammatory cytokines.50 A 2004 study 

implemented a vitamin D deficient diet in pregnant NOD mice, acclimated offspring to this diet 

following birth for 100 days and analyzed the immune system. Vitamin D deficient NOD mice 

were found to have extreme abnormalities in macrophage cytokine profiles and elevated 

circulating proinflammatory factors, leading to aggressive disease progression.52 Given its 

imperative immunological role, vitamin D may act as an environmental modulator in the 

prevention or progression of T1DM.52  
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Overview of vitamin D metabolism 

 Vitamin D3 (cholecalciferol) can be obtained in the diet or be synthesized in the skin via 

ultraviolet radiation. Ultraviolet B (UVB) photons penetrate the epidermis and dermis layers of 

the skin to activate pre-vitamin D3 (7-dehydrocholesterol) to vitamin D3. Vitamin D3 is 

transported through circulation via vitamin D binding protein (DBP) for hydroxylation in the 

liver, resulting in 25-hydroxyvitamin D3 (25(OH)D3; calcidiol), the major circulating form of 

vitamin D in the body. Clinically, this form of vitamin D is the best reflection of vitamin D 

status. DBP then transports 25(OH)D3 to cellular tissues for uptake and utilization.53 In the 

kidney, the DBP-25(OH)D3 complex is filtered across the glomerulus where it then binds to the 

cellular membrane of the proximal renal tubule, activating endocytic receptors megalin, cubilin 

and disabled-2 (dab-2) proteins for reabsorption. There, 25(OH)D3 is further hydroxylated by 1α-

hydroxylase to form biologically active 1,25(OH)2D3.54  

Vitamin D and type 1 diabetes 

 Structural and functional changes in the kidneys associated with diabetic nephropathy can 

dramatically alter filtration and appropriate reabsorption of nutrients, affecting vitamin D status. 

The megalin-cubilin complex is responsible for reabsorption of many proteins and nutrients 

including DBP and 25(OH)D3. Previous studies using megalin-knockout mice observed 

increased excretion of DBP, 25(OH)D3, albumin and other low-molecular weight proteins.54 

Similar results have been observed in T1DM animal models, with positive correlations between 

chronic hyperglycemia and DBP excretion.4 Streptozotocin (STZ)-induced models of T1DM 

have confirmed these hypotheses, observing decreased expression of megalin in the proximal 

tubules and increased urinary excretion of megalin, cubilin and DBP.55  
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 Additional studies have observed increased expression of renal 1α-hydroxylase as a 

compensatory mechanism to maintain vitamin D status in diabetic rodent models. However, the 

upregulation of this hydroxylase enzyme was typically associated with decreased 1,25(OH)D3 

concentrations due to 25(OH)D3 deficiency, the substrate for 1,25(OH)D3 activation. 

Collectively, the results suggests that the progression of diabetic nephropathy leads to the 

downregulation and excretion of endocytic receptors, causing the impaired reabsorption of DBP 

and 25(OH)D3, resulting in vitamin D deficiency.54 

Introduction to Methyl Group Metabolism 

 Folate, homocysteine and methyl group metabolism are interrelated pathways that 

encompass one-carbon metabolism.56 Together these pathways regulate methyl group supply for 

a multitude of cellular pathways and metabolic reactions. One-carbon methyl groups are 

essential for over 100 transmethylation reactions and play a key role in DNA methylation and 

regulation of gene expression. The disruption of these pathways is related to a variety of 

pathologies including birth defects, CVD, osteoporosis, neurological disorders, cancer, metabolic 

syndrome and vascular diseases.57,58 Understanding the mechanism by which these pathways are 

perturbed may provide a sound link between chronic disease and associated complications. 

Methionine, folate, betaine and choline act as methyl donors, transferring one-carbon units 

throughout four regulating pathways within methyl group metabolism. Transmethylation, 

transsulfuration, folate-independent remethylation and folate-dependent remethylation mediate 

methyl group supply and homocysteine metabolism. These pathways are regulated by a variety 

of mechanisms to fuel transmethylation reactions that require an adequate supply of methyl 

groups. This section of the literature review will summarize each of these pathways and highlight 

the key metabolic steps affected by the diabetic state.  
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Figure 1.3: One carbon methyl group metabolism and folate metabolism. Methionine is converted to 
homocysteine in the transmethylation pathway. Homocysteine can be remethylated to methionine via folate-
dependent or folate-independent mechanisms. 59 
 

Transmethylation 

The transmethylation pathway is present in most bodily tissues, beginning with an ATP-

dependent reaction catalyzed by methionine adenosyltransferase (MAT). MAT is a tissue-

specific enzyme that is expressed by three separate isoforms. MAT I and III are solely expressed 

in the liver, while MAT II is functional in most tissues.60 This enzyme donates an adenosyl group 

to the amino acid methionine to form S-adenosylmethionine (SAM). Methyltransferases (MTs) 

mediate methyl group transfer from SAM to a variety of substrates including lipids, proteins, 

nucleic acids and neurotransmitters.61,62 A methylated product and S-adenosylhomocysteine 

(SAH), a competitive inhibitor of MTs are generated following methyl group removal from 

SAM. SAH is then hydrolyzed to form homocysteine and adenosine via S-adenosylhomocysteine 

hydrolase (SAHH).62,63 
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Methylated substrates formed through the transmethylation pathway are imperative for a 

variety of cellular processes. Methylated lipids are essential components to the structural 

integrity of cellular walls, bile formation and cellular signaling,64 while methylation of proteins 

stimulates protein activation via post-translational modification. Methylated proteins are 

functional in cellular signaling, transcription and gene regulation.65 Nucleic acids comprised of 

ribonucleic acids (RNA) and deoxyribonucleic acid (DNA) are methylated in this pathway and 

are vital in regulating gene expression.66 Epigenetic modifications of methylated substrates have 

been directly correlated with the development of numerous pathological conditions including 

cancer, CVD and autoimmune diseases.67 Therefore, it is crucial to ensure adequate methyl 

group supply and promote homeostasis of key proteins within one-carbon metabolism.   

Transmethylation is dependent on and regulated by a variety of mechanisms, including 

allosteric regulation via SAM:SAH ratio and the action of specific regulatory proteins in 

response to this ratio.59 The ratio of SAM:SAH in the transmethylation pathway influences  

homocysteine levels, methyl group usage and the pathways utilized in methyl group metabolism. 

Elevated concentrations of either compound can result in inhibition of processes regulated by it’s 

counterpart. Elevated SAH concentrations inhibit SAM-dependent reactions, potentiating 

disturbed methyl group maintenance. Conflicting results have been found regarding the 

relationship between SAH and hypomethylation, suggesting the multitude of factors involved in 

regulating these metabolic pathways.61 Increased concentrations of SAM 1) stimulate the 

catabolism of homocysteine to cysteine via cystathionine beta synthase (CBS), utilizing the 

transsulfuration pathway and 2) allosterically inhibit 5-CH3-THF, preventing folate-dependent 

remethylation when SAM concentrations are sufficient. These mechanisms promote SAM:SAH 

homeostasis, homocysteine regulation and conserve methionine for vital methylation reactions.56 
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The transmethylation pathway utilizes three primary methyltransferase proteins to regulate 

methyl group metabolism and homocysteine concentrations.62 Glycine N-methyltransferase 

(GNMT) is an enzyme that accepts and catabolizes adenosine to sarcosine, a metabolite with no 

known metabolic role.56 This mechanism provides a pathway to discard excess methyl groups 

which can help regulate SAM:SAH ratio and/or lead to hypomethylation.61 Enzymes that assist 

to yield SAH include phospatidylethanolamine N-methyl transferase (PEMT) and 

guanidinoacetate N-methyltransferase (GAMT), forming physphatidylcholine and creatine, 

respectively.62 These proteins are the largest known methyl consumers and therefore, vital in 

regulating homocysteine concentrations.59 

Folate-dependent remethylation 

Two separate pathways, folate-dependent remethylation and folate-independent 

remethylation pathways can generate methionine from homocysteine. The folate-dependent 

pathway utilizes methionine synthase (MS), a B12 dependent protein to catalyze the 

remethylation of homocysteine with the addition of a methyl group donated by folate derivative, 

5-methyltetrahydrofolate (5-CH3-THF). Coenzyme FADH2 assists coenzyme 

methylenetetrahydrofolate reductase (MTHFR), to reduce 5,10 methylenetetrahydrofolate (5,10-

CH3-THF) to 5-CH3-THF in this rate-limiting irreversible reaction. Remethylation of 

homocysteine results in the formation of methionine and tetrahydrofolate (THF).56  

Allosteric regulation allows for these interrelated pathways to maximize methyl group 

supply, while also normalizing homocysteine and other key proteins throughout methyl group 

metabolism. Elevated methyl group supply and SAM concentrations inhibit the activity of 

MTHFR, preventing the formation of methyl donor 5-CH3-THF and downregulating the folate-
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dependent remethylation pathway. Conversely, when methyl group supply is depleted and SAM 

concentrations are low, MTHFR is upregulated allowing for remethylation of homocysteine.58,68 

Folate-independent remethylation 

Folate-independent remethylation is an alternative pathway used to regenerate methionine 

from homocysteine. This utilization of this pathway depends on the dietary protein intake that 

corresponds to methionine concentrations and methyl group supply, SAM:SAH ratio and the 

availability of vitamins B12, B6 and folate. Choline is an essential nutrient that may be oxidized 

in the body via choline oxidase/dehydrogenase to form metabolite betaine, the methyl donor in 

the folate-independent remethylation of homocysteine to methionine.63 Betaine-homocysteine S-

methyltransferase (BHMT), a protein primarily expressed in mammalian hepatic tissue, accepts 

and transfers methyl groups from betaine to homocysteine when methyl groups are depleted and 

SAM concentrations are low.60 This pathway is highly favored when B vitamins are not available 

to fuel folate-dependent remethylation. However, BHMT is allosterically inhibited by SAM 

when methyl group supply is sufficient and SAM:SAH ratio is near homeostasis.69 Collectively, 

these pathways work in sync to maintain vital methylation reactions and promote optimal body 

functioning. 

Transsulfuration  

Transsulfuration is a B6-dependent irreversible metabolic pathway that is upregulated in 

correlation with elevated homocysteine levels. This allosteric mechanism allows for the 

catabolism of homocysteine in the event of elevated methionine levels, folate/B12 deficiency 

and/or the physiological need for cysteine, it’s catabolic product. Transsulfuration is active in the 

liver, kidney, pancreas, intestine and brain.60 Altered expression and activity of key 

transsulfuration enzymes CBS and γ-cystathionase have been observed in tissues specific to 
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diabetes. These observations may be largely due to the hyperhomocystenemic state characteristic 

of T1DM development and severity of CKD.6  

Disruption of methyl group metabolism and pathological implications 

 Research has proven the importance of methyl group maintenance in preventing the 

occurrence of disease. Maintenance of methyl group metabolism is affected by numerous factors 

including the following 1) dietary protein deficiency, which reflects methionine concentrations 

and methyl group supply 2) deficiencies of specific nutrients that fuel one-carbon metabolism 

(i.e. choline, folate, B6, B12)70 3) medications 4) environmental toxins 5) genetic polymorphisms 

of one-carbon metabolic enzymes and 6) complications associated with metabolic diseases.71  

 Disturbed methylation directly alters gene expression, which may lead to a multitude of 

health disparities. Undermethylation of DNA typically leads to overexpression of genes, while 

elevated methylation causes gene silencing. Altered gene expression due to undermethylated 

DNA has been suggested to increase the incidence of oncogenes.56 Several studies have found a 

strong correlation between methyl group deficient diets and the increased expression of 

carcinogens leading to hepatocellular cancer. Wagner et al. identified a 51% increase in 

carcinogenic liver cells in rats fed methionine and choline deficient diets for 13 to 24 months.68

 The body responds to methyl group deficiency by downregulating GNMT enzyme, 

preserving SAM-donated methyl groups for essential methylation reactions when methionine and 

SAM concentrations are low. Research studies have also supplemented homocysteine in 

conjunction with methyl-deficient diets to determine if remethylation of homocysteine would 

provide sufficient methionine to promote methyl group maintenance. Consensus of these results 

is that while homocystiene can be used to regenerate methionine, methyl group deficient diets 
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decrease growth in rats, suggesting that remethylation has a limited capacity for maintaining vital 

methylation reactions.72,73 

 Other studies have investigated the effects of methyl and folate deficient diets in methyl 

group metabolism. Deficiencies of nutrients essential to one-carbon metabolism are highly 

associated with perturbed central nervous system functioning and progression of neurological 

disorders. Additionally, B vitamin deficiencies may lead to depression, birth defects, anemia and 

CVD related to hyperhomocystemia. Folate and methyl deficient diets in rats have caused 

accumulation of homocysteine in the brain as a result of perturbed remethylation and 

transsulfuration pathways in one-carbon metabolism. Elevated homocysteine levels and methyl 

deficiency induced oxidative damage may be indicative in the etiology of CVD and 

neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s 

disease and amyotropic lateral sclerosis.70 

 Plasma homocysteine levels between 5-15 µmol/L are considered normal in humans.74 

Hyperhomocystenemia is categorized based on severity, with moderate  (>10µmol/L), 

intermediate (>30 µmol/L) and severe (>100 µmol/L) classifications.3 Homocysteine levels are 

affected by numerous factors including age, sex, smoking, medications, and many disease states, 

especially those associated with impaired renal function. Homocysteine concentrations are 

typically higher in men compared to women and progressively increase with age in both sexes.75 

A parallel relationship between smoking and elevated plasma homocysteine has been replicated 

in many studies. Researchers propose that this relationship may be attributed to impaired vitamin 

B6 status and subsequent perturbation of the transsulfuration pathway, causing homocysteine 

accumulation.75  
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A variety of drug-nutrient interactions impact homocysteine concentrations due to their 

affect on vitamin absorption and disturbance of one-carbon metabolism and folate metabolism. 

Medications used to treat high blood cholesterol and non-insulin dependent diabetes including 

cholestyramine and metformin, interfere with absorption of B vitamins, essential for maintaining 

metabolic pathways associated with homocysteine regulation. Other drugs such as methotrexate, 

fibric acid and nicotinic acid are also associated with elevated homocysteine levels.76 A 2001 

study observed a 53-57% increase in plasma homocysteine levels in patients treated with 

ciprofibrate for hypertriglyceridemia.77 Patients are urged to take caution with any of these 

prescriptions, as hyperhomocysteinemia can lead to many adverse health affects including CVD.  

 Various genetic polymorphisms influence methyl group metabolism, altering methylation 

reactions and homocysteine levels. MTHFR genetic mutations are highly associated with 

hyperhomocystenemia and considered genetic risk factors for CVD.  The primary MTHFR 

mutation is the C667T variant and is characterized by the accumulation of 5-CH3-THF, 

inhibiting the folate-dependent remethylation pathway for regeneration of methionine from 

homocysteine.78 “Methyl trapping” is commonly observed in individuals with this genetic 

mutation and is exacerbated by B vitamin deficiencies, inhibiting folate-independent 

remethylation of methionine via MS enzyme and catabolism of homocysteine via 

transsulfuration.79 Less common one-carbon mutations related to hyperhomocysteinemia include 

transsulfuration proteins, CBS and γ-cystathionase.80 

Methyl group metabolism and type 1 diabetes 

One of the largest determinants in total plasma homocysteine is renal function as illustrated 

by the inverse relationship between GFR and homocysteine. This is one of the strongest links 

between two detrimental chronic diseases, T1DM and CVD. The kidneys play a key role in 
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reuptake of many nutrients including amino acids and their metabolites. The exact mechanism by 

which the kidney functions in homocysteine metabolism and clearance has not been confirmed. 

However, researchers postulate that homocysteine filtration is similar to that of cysteine, lysine, 

arginine and other amino acids. Therefore, impairment of glomerular filtration associated with 

renal disease may cause decreased homocysteine clearance and subsequent plasma homocysteine 

elevation. Some researchers have suggested that in the event of renal impairment, homocysteine-

regulating enzymes are hormonally upregulated to maintain normal plasma homocysteine 

levels.3  

T1DM is typically associated with hyperhomocystenemia as a result these mechanisms. 

However, previous studies have identified hypohomocystenemia in STZ-induced diabetic rodent 

models. While counterintuitive, the mechanism for lower circulating plasma homocysteine 

concentrations may be attributed to compensatory increases in one-carbon metabolic enzymes, 

CBS and γ-cystathionase. These proteins fuel transsulfuration, an alternative metabolic pathway 

capable of catabolizing homocysteine when concentrations are elevated.59 Lower circulating 

concentrations of homocysteine have been observed in T1DM patients in the early stages of the 

disease, characterized by the absence of microvascular complications. Hyperhomocystenemia 

and downregulation of transmethylation and transsulfuration pathways was assessed in 

concurrence with CKD progression.81,82 These results indicate that homocysteine regulation is 

largely dependent on disease severity and functionality of one-carbon metabolic pathways to 

keep homocysteine in homeostatic conditions and maintain methylation reactions.     

Various proteins throughout one carbon methyl group and folate metabolism mediate plasma 

homocysteine concentrations and alterations of these proteins have been observed in T1DM.  
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Perturbed methyl group metabolism has been observed using rodent models of T1DM, indicated 

by the upregulation of GNMT, CBS and γ-cysthathionase and BHMT, enzymes present in 

transmethylation, transsulfuration and folate-independent pathways.6 These enzymes play a key 

regulatory role in homocysteine regulation and methyl group maintenance. Alterations in protein 

expression may indicate the presence of nutritional and/or hormonal modulation of these 

enzymes associated with the diabetic state.6  

Our previous research has demonstrated retinoic acid (RA) and dexamethasone (DEX) as 

independent signals in GNMT induction in a STZ-treated rat model. Insulin administration 

alleviated GNMT upregulation in this diabetic model, suggesting its role as a hormonal 

modulator of regulatory methyl group metabolism proteins.6 However, we would also like to 

explore the possibility of glucose as an independent signal for GNMT induction and other 

associated homocysteine-regulatory proteins. Hormone insulin functions to regulate postprandial 

blood glucose.12 Therefore, normalization of GNMT could be attributed to the administration of 

insulin and/or achieving blood glucose homeostasis.  

Taken together, the goal of this experimental study was to investigate the effect of dietary 

resistant starch (RS) in attenuating hyperglycemia in diabetes, as a means to prevent disease 

complications and associated perturbations in methyl group metabolism. In addition, this study 

aims to investigate RS and glucose as potential hormonal and nutritional modulators in methyl 

group metabolism using a STZ-induced model of T1DM.  

Resistant Starch 

Starch background 

Starch is a type of polysaccharide and a primary source of carbohydrates. This 

polysaccharide is made up of monosaccharides linked together by ∝-D-(1,4) and ∝-D-(1,6) 
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glycosidic linkages. Starch is comprised of two primary molecules, amylose and amylopectin. 

Amylose and amylopectin differ both in structure and digestibility. Amylose is a linear polymer 

chain of glucose molecules connected via ∝-D-(1,4) glycosidic linkages, which typically 

constitutes 25% of starch. Amylopectin is a highly branched glucose molecule that is linked by 

both ∝-D-(1,4) and ∝-D-(1,6) glycosidic linkages making up the remaining 75% of this 

carbohydrate.83,84 

Starch is digested by ∝amylases found in the saliva, pancreas and small intestine. The 

branching of glucose molecules in amylopectin allows for increased enzymatic action and 

therefore more efficient digestibility than amylose.84 Advances in biotechnology have geared 

toward improving the structure, functionality and yield of different starches. Altering genotypes 

of native starches has resulted in the amplified production of high quality crops. Biotechnology 

has allowed for researchers to better understand how functionality and structure affect digestion 

and overall health.83 

Digestibility of starch depends on the chemical makeup of the particular molecule, which 

determines the functional characteristics. Resistant starches are found in nature and can be 

synthetically developed via gene alteration. RS cannot be digested by the ∝-amylases that reside 

in the saliva and throughout the gastrointestinal tract. Therefore, these starches completely or 

partially bypass the small intestine for fermentation in the large intestine. Research has shown 

evidence of prebiotic health benefits associated with consumption of this product. Colonic 

fermentation seems to produce specific metabolites that have been associated with many health 

benefits including normalization of macronutrient metabolism, reduction in colonic carcinogenic 

precursers and hormonal regulation resulting in potential mental and physical health benefits.85  
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Definition and classifications of resistant starch          

 RS is divided among 5 subcategories referred to as RSI, RSII, RSIII, RSIV and RSV. RS1 is 

a type of starch that is structurally protected by a strong protein complex and a dense cell wall, 

inhibiting water absorption and gelatinization and therefore preventing appropriate enzymatic 

action, digestion and absorption in the small intestine.85 RSII is crystalline in structure and 

resistant to enzymatic hydrolysis in an uncooked state. Examples of RSII sources include potato 

starch, green banana starch, gingko starch and high amylose maize starch.83,85 RSIII becomes 

resistant following retrogradation at refrigeration temperatures (4-5°C). This phenomenon causes 

amylose and amylopectin to form of double helices, shortening the chain length of these 

molecules and inhibiting water binding and enzymatic hydrolysis. RSIV is formed via chemical 

modification, which can implement cross-linking throughout the molecule. Cross-linking can 

inhibit both water absorption and enzymatic action by amylases, causing a resistant effect during 

digestion and fermentation. RSV is a thermally stable product that is formed when starch and 

lipid molecules interact. This interaction causes the formation of a helical amylose-lipid 

complex, preventing water absorption and swelling and enzymatic hydrolysis.85  

Resistant starch: applications in health and disease 

 Amylose constitutes approximately 20-35% of naturally occurring maize, with high amylose 

starches comprising greater than 40%.86 Breeding of high amylose starch has been 

commercialized and widely utilized in research, with amylose contents exceeding 90% of total 

composition. Resistant starches have confirmed positive physiological effects according to 

numerous research studies. RS may play an important role in the prevention of colon cancer and 

gallstone formation, improvement of blood lipid profiles and treatment of gastrointestinal 
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diseases and diabetes. Other studies have shown that RS may attenuate fat accumulation and 

increase absorption of key minerals such as calcium and iron.84  

Resistant starch and glycemic control in diabetes 

RS has been investigated as a known hypoglycemic agent that can be implemented for 

therapeutic uses in the treatment of diabetes. Typically, the digestion of starch begins 

immediately following consumption of carbohydrate meals. However, RS is digested at a slower 

rate, taking between 5-7 hours to reach the large intestine. The rate of digestion and absorption of 

glucose is slower following RS consumption, preventing dramatic increases in postprandial 

blood glucose, which may possibly reduce adverse health effects associated with chronic 

hyperglycemia.84  

We have demonstrated the ability of RS to prevent hyperglycemia and associated diabetic 

complications in rodent models of T1DM and type 2 diabetes mellitus (T2DM). Attenuation or 

prevention of long-term diabetic complications may be a result of the protective effect of RS on 

kidney function and nutrient homeostasis. Complications associated with diabetes are highly 

associated with microvascular issues, causing deteriorating kidney function and therefore 

disrupting nutritional status. Using an RSII based diet as a replacement for cornstarch, we have 

observed attenuated DM-associated weight loss and hyperglycemia, prevented diabetic 

nephropathy as evidenced by normalized serum creatinine, urinary volume and urinary albumin 

excretion, prevented excretion of VBP and 25(OH)D3 and normalized gene expression of renal 

endocytic proteins megalin and dab2, respectively.55 

Resistant starch and the gut microbiome 

 RS is a notable substrate for fermentation of short chain fatty acids (SCFA’s) including 

butyrate, acetate and propionate in the colonic gut. Dietary RS has been shown to favor the 
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production of butyrate among other SCFA’s, however this largely depends on the type, amount 

and structure of RS, all of which can affect microbial fermentation and relative SCFA 

proportions. Typically, acetate represents the highest proportion (60%) among colonic SCFA’s 

and therefore acetate is the most abundant in peripheral circulation. However, peripheral 

circulation is generally low for these fermentable by-products.87  

SCFA’s have been associated with reduced inflammation in monocytes and peripheral blood 

mononuclear cells (PBMC), mediated by FFAR2 (immune cells) or FFAR3 (adipocytes) and 

normalization of cytokine/chemokine profiles and prostaglandin E2 (PGE2).87 Other studies have 

observed neutrophil and leukocyte recruitment stimulated by FFAR2 to alleviate bacterial-

associated inflammation. Low levels of SCFA’s are typically found in circulation, limiting anti-

inflammatory action  

Typically, there are low levels of SCFA’s found in circulation, limiting anti-inflammatory 

action to the colon. However, pathogenic bacteria are capable of producing SCFA’s throughout 

circulation and subsequently elevating peripheral concentrations. This hypothesis supports the 

immunological role of SCFA’s in the colonic gut, peripheral tissues and adipocytes. The action 

of SCFA’s in these tissues is significant given the inflammatory pathogenesis of T2DM and 

various gastrointestinal diseases.88  
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CHAPTER 2: RESISTANT STARCH PROMOTES 

REGULATION OF METHYL GROUP METABOLISM 

Abstract 

Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by pancreatic β 

cell dysfunction, insulin deficiency and abnormal carbohydrate metabolism. Chronic 

hyperglycemia causes structural damage to the kidneys, resulting in ultrafiltration and imbalance 

of nutrients such as vitamin D and disruption of various proteins associated with methyl group 

metabolism and homocysteine regulation.3-5 Using streptozotocin (STZ) treated rats as a model 

of T1DM, we have demonstrated that dietary resistant starch (RS) attenuates many complications 

associated with T1DM including increased urinary excretion of 25 hydroxyvitamin D3 

(25(OH)D3) and vitamin D binding protein (DBP).55  

The focus of this study was to characterize the impact of RS on methyl group metabolism 

using a STZ-induced diabetic rat model. Male Sprague Dawley rats (n=38) were randomly 

assigned to respective groups: control starch (CS, n=12), diabetes-CS (DM-CS, n=12) and 

diabetes-RS (DM-RS; n=14). CS and DM-CS rats were fed a standard cornstarch diet throughout 

the 9-wk study, whereas the DM-RS group was acclimated to the CS diet for 2-wk and 

transitioned to a high amylose RS diet (RS was 37% resistant to digestion) for the remaining 7-

wk. Rats were sacrificed, tissues were extracted and plasma and urine were collected for 

analysis. DM-RS rats exhibited symptoms characteristic to DM including polyuria, 

hyperglycemia and decreased urinary creatinine excretion (2.3 fold). In addition, glycine N-

methyltransferase (GNMT) activity was elevated in hepatic (1.2 fold) and renal (~2 fold) tissues. 

However, there was no change in ribonucleic acid (mRNA) abundance of one-carbon proteins 

GNMT and betaine-homocysteine S-methyltransferase (BHMT) in DM rats fed either diet. 
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Dietary RS prevented or attenuated DM-complications and normalized hepatic and renal GNMT, 

an important protein to one-carbon metabolism.  

 
Introduction 

Recent developments in nutritional sciences have geared researchers toward implementing 

therapeutic dietary strategies in the prevention and treatment of various pathologies including 

gastrointestinal conditions, neurological disorders and autoimmune diseases. Resistant starch 

(RS) is a type of dietary fiber that resists digestion in the small intestine and undergoes 

fermentation in the colon.89 Consumption of carbohydrates that are abundant in RS have 

exhibited many physiological and metabolic health benefits. Subsequently, RS has been widely 

used as a dietary preventative and treatment method for a variety of diseases including diabetes, 

cardiovascular disease, obesity and cancer.89  

Colonic fermentation of RS results in the production of short chain fatty acids (SCFA’s), 

proven as mediators in these pathological conditions. Gut hormones stimulated by SCFA’s are 

associated with increased energy expenditure and lipolysis in humans, which provides 

implications for RS in prevention and treatment of obesity, type 2 diabetes mellitus (T2DM) and 

metabolic syndrome. SCFA absorption in adipocytes is also linked to improved blood lipid 

profiles.89 Furthermore, SCFA have an immunological role by producing anti-inflammatory 

effects in the colonic gut, peripheral tissues and adipocytes. This mechanism has shown benefits 

in inflammatory-related diseases such as T2DM, gastrointestinal disorders and cancer.90 

The protective effect of RS in diabetes is likely related to several mechanisms. Dietary RS 

bypasses the small intestine, resisting typical carbohydrate digestion and absorption and assisting 

in glycemic control. Various studies have shown a reduction in post-prandial blood glucose 

associated with RS consumption.1,91-93 Due to the multitude of complications associated with 



www.manaraa.com

	  
	  

34	  

chronic hyperglycemia, the use of RS as a therapeutic dietary agent may provide favorable 

outlooks for diabetic patients, slowing and/or preventing the progression of these complications 

and inevitable mortality. Diabetic nephropathy is a common vascular disease of the kidneys 

associated with poor glycemic control in diabetes. Declining renal function results in 

hyperfiltration and reduced clearance of various proteins and nutrients associated with vitamin D 

metabolism and one-carbon metabolism.2,5 RS has previously shown to attenuate/prevent 

complications associated with uncontrolled hyperglycemia such as weight loss, increased urinary 

output and hyperfiltration of proteins and nutrients associated with declining renal function.55 

Most recently, we have shown RS to restore vitamin D status as evidenced by reduced vitamin D 

binding protein (DBP) and 25 hydroxyvitamin D3 (25(OH)D3) excretion and normalized 

expression of endocytic vitamin D receptors in the kidneys.55 

 Reduced homocysteine clearance and elevated plasma homocysteine levels are associated 

with chronic kidney disease (CKD) progression in DM.3 Subsequent induction of one-carbon 

regulatory proteins glycine N-methyltransferase (GNMT), betaine-homocysteine S-

methyltransferase BHMT, cystathionine beta synthase (CBS) and y-cystathionase have also been 

observed and hypothesized as compensatory mechanisms to maintain methyl group supply and 

normal homocysteine levels.6 In this study we hypothesized that RS supplementation would 

alleviate abnormalities in methyl group metabolism by controlling blood glucose and preserving 

kidney function.   

Materials and Methods 

Rodents. Animal studies were approved and conducted under the guidelines provided by the 

Iowa State University Laboratory Animal Resources. Male Sprague Dawley (N=38; Harlan 

Teklad, Madison, WI) rats weighing 110-140 g were housed individually in plastic-wired cages 
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under a 12-hr light:dark cycle. Rodents were housed for 9 wk and had access to food and water 

ad libitum.  

Diets. The standard control diet composition is listed in Table 2.1. High-amylose maize RS was 

used as a replacement for cornstarch. Cornstarch (CS) was replaced with RS, 37% resistant to 

digestion. Starches were cooked prior to mixing with other ingredients.   

Table 2.1 Diet Compositions 

Diet Ingredient Control (g/kg) RS (g/kg) 

  Casein, vitamin-free 200 200 

  Glucose 150 150 

  Cornstarch 550 0 

  Resistant Starch 0 550 

  Corn oil 50 50 

  Vitamin Mix (AIN93) 10 10 

  Mineral Mix (AIN93) 40 40 

  Methionine 3.0 3.0 

 Choline 2.0 2.0 
 

Treatment groups. Sprague Dawley rats were acclimated to the control diet for 14 d. Rats were 

then randomly divided into three groups, including control (group 1; n=12), diabetes mellitus 

(DM; group 2; n=12) and DM+RS (group 3; n=14). Following the acclimation period, group 1 

(control) and 2 (DM) were continued on the standard diet and groups 3 (RS) was transitioned to 

the RS diet. This summarizes the 3 groups and 2 diets that were administered over the 50 d 

experimental period.  

Streptozotocin injection. Following the acclimation period, rats transitioned to the diet regimen 

specified for each group for approximately 21 d. On d 35, diabetic rats (groups 3-6), were given 

an intraperitoneal injection of streptozotocin (STZ; 60 mg/kg BW) to induce diabetes. Control 
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rats (groups 1-2) were given a vehicle injection (10 mmol/L citrate buffer, pH 4.5). Rats were 

killed 3 wk post-STZ injection.  

Data collection. All rodents were housed in metabolic cages for urine collection and fasted 

overnight (12h) prior to the kill. A cocktail of ketamine:xylamine (90:10 mg/kg BW) was 

prepared and used to anesthetize rats via intraperitoneal injection. Whole blood was collected via 

cardiac puncture and centrifuged for plasma collection. After euthanasia, liver and kidney tissues 

were extracted and submerged in liquid nitrogen for preservation. Collected tissues, blood and 

urine were stored at -80°C for later analysis.  

Assessment of renal function. Urinary creatinine, serum creatinine and serum albumin 

concentrations were assessed using a commercial colorimetric kit (QuantiChrom Creatinine 

Assay Kit and QuantiChrom BCG Albumin Assay Kit; Bioassay Systems, Hayward, CA).  

Assessment of blood glucose. To assess blood glucose in all rats, fasting blood glucose (FBG) 

was measured via glucometer (Bayer Healthcare) using serum collected via cardiac puncture at 

the time of euthanasia.  

Assessment of DM symptoms. To assess weight loss and increased urinary output associated 

with DM, 12-hr urine samples were collected and measured prior to euthanasia. Body weight 

was determined daily throughout the study to calculate weight loss/gain following diet 

implementation and STZ injections in DM rats. 

Assessment of serum 25(OH)D3 status.  Vitamin D status was assessed by measuring serum 

25(OH)D3 using a commercial enzyme immunoassay kit (Immunodiagnostic Systems, 

Scottsdale, AZ).  

Enzyme analysis. GNMT activity was assessed in hepatic and renal tissues using the Cook and 

Wagner method94 with slight modifications. Each sample assay was performed in triplicate using 
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250 µg aliquots and combined with a reaction mix containing 0.2 M Tris buffer (pH 9.0), 0.2 

mM S-adenosyl-L-[methyl-3H]methionine (PerkinElmer, Waltham, MA), 2 mM glycine and 5 

mM dithiothreitol. A heat-killed control was prepared for triplicate samples and aliquots were 

incubated for 30 min at 25°C. The reaction was halted by the addition of 10% trichoroacetic acid 

and activated charcoal was added to aliquots, vortexed and centrifuged (14,000 x g) to remove 

excess, unreacted SAM. Supernatant layers were isolated and extracted to be used for liquid 

scintillation counting.  

Real-time PCR. Hepatic tissue was removed from -80°C storage and ~0.1g samples were cut 

and dispersed in Trizol Reagant (Invitrogen, Carlsbad, CA). RNA was isolated using SV Total 

RNA Isolation System (Promega, Madison, WI) and quantified via UV detection (Nanodrop, 

280/260). Extracted RNA was used for cDNA synthesis using a High Capacity cDNA synthesis 

kit with RNase inhibitor (Applied Biosystems, Foster City, CA). Reactions were performed in 

duplicate from single cDNA stocks created for each liver sample. Hepatic GNMT and BHMT 

gene expression was analyzed via real-time PCR using iScript SYBR Green Detection reagents 

(Bio-Rad, Hercules, CA), 4µL cDNA/well and forward and reverse primer sets for BHMT and 

GNMT using 18S mRNA as the control or housekeeping gene (Table 2.2). Gene expression was 

assessed via fold-induction relative to non-diabetic control rats.  

Statistical Analysis 

Statistics were calculated using SigmaPlot 9.0 software (Systat, Chicago, IL). Treatment group 

means were compared using a one-way ANOVA, followed by the Fisher least-significant 

difference post-test. ANOVA on ranks was performed when normality or equal variance tests 

failed. Significant differences were noted at P < 0.05.  
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Results 

Serum 25(OH)D3 was moderately elevated in DM.  

No statistical differences between groups were yielded in this assay. However, 25(OH)D3 was 

moderately elevated in DM rats compared to control and RS-treated rats. This may be attributed 

to increased consumption of food, leading to increased vitamin D status.  

Dietary RS attenuated weight loss and hyperglycemia, and prevented polyuria. 

Weight loss. No statistical difference in cumulative weight gain was observed between groups 

prior to STZ-injection (Table 2.2). DM rats fed the control diet lost 27% of total body weight 

following STZ-injection, while control rats gained 11% of total body weight. DM rats fed the RS 

diet gained 1% of total body weight following STZ-injection (Figure 3.3). Hyperglycemia. 

Elevated blood glucose (527±52.2 mg/dL) was observed in DM rats at 9 wk 140% compared to 

CS blood glucose (221.6±17.1 mg/dL). Hyperglycemia was not prevented in RS rats, however 

there was a statistically significant 32% reduction in blood glucose (358.4±46.6 mg/dL) 

compared to the DM-CS group (p=0.008). Polyuria. Polyuria is evident in DM and is used as a 

marker for renal dysfunction. Urine was collected over a 12-hour period and measurements 

illustrated a 53% reduction in urinary volume of RS rats (6.7±1.9 mL) relative to DM rats 

(12.7±2.2 mL) fed CS diet (p=0.022). There were no statistically significant differences observed 

between the control and RS group (p=0.533) (Figure 2.5).  

Dietary RS normalized urinary creatinine excretion, but had no affect on serum creatinine 

or serum albumin concentrations. Decreased urinary creatinine levels were observed in DM 

group, ~60% lower than the control (p=0.006) (Figure 2.2A). RS normalized creatinine 

concentrations in the urine. No statistical differences were observed between DM-RS and CS 
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groups (p=0.434). There were no significant differences in serum creatinine concentrations 

(p=0.417; Figure 2.2B) or serum albumin concentrations (p=0.384) between groups (Figure 2.3). 

Dietary RS significantly decreased renal GNMT activity and attenuated hepatic GNMT 

activity. Hepatic GNMT Activity. Similar to other studies in our lab, GNMT activity was 

elevated in the liver of diabetic rats and significant differences were observed between all groups 

(p=0.027). This activity was not entirely normalized by RS, however there was a slight reduction 

(p=0.127).  Renal GNMT Activity. Renal GNMT Activity is generally lower compared to hepatic 

tissue. However, increased GNMT activity in DM groups was significantly reduced (23%) by the 

RS diet (p=0.039). There were no observable differences between the control and DM-RS groups 

(p=0.018).  

No differences in GNMT and BHMT mRNA expression in hepatic tissue found between 

groups. Induction of hepatic GNMT (~4 fold) and BHMT mRNA (2.1 fold) was illustrated in 

DM-CS rats relative to control. RS attenuated expression of both proteins (Figure 2.6), however 

the results were not statistically significant (Table 2.4).  

Discussion 

 Resistant starch has been confirmed as an effective dietary strategy for glycemic control and 

alleviation of complications characteristic of diabetes.1,55,91-93 We hypothesized that RS 

consumption would normalize abnormalities in methyl group metabolism regarding induction of 

key regulatory proteins GNMT and BHMT by diabetes. As demonstrated in previous studies, 

GNMT activity was elevated in kidney and liver tissues of diabetic rats. In addition, elevated 

hepatic mRNA expression of BHMT and GNMT was observed in DM rats.59,95,96 Previous 

research has shown the use of hormones and nutrients to normalize the expression of these 
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proteins in one-carbon metabolism.6 Similar results were obtained in this model, suggesting RS 

to be another mediator for these proteins.  

 Weight loss associated with prolonged hyperglycemia is a characteristic symptom of 

diabetes. Interestingly, the therapeutic use of RS has been used in many T2DM and obese 

models as a dietary method for weight loss.97,98 This mechanism is related to the production of 

GLP-1 (glucagon like peptide-1) by butyrate in the colonic gut and is associated with increased 

energy expenditure and lipolysis in humans.99 RS attenuated hyperglycemia and subsequently 

weight loss in this T1DM model, suggesting that this mechanism did not have a profound 

impact.  

Normal FBG in humans ranges between 70-100 mg/dL.33 However, glucose concentrations 

in rodents are much higher under fasting conditions. One study evaluated blood glucose after 5 

and 11 hours in Wistar rats, determining an average FBG between 135-190 mg/dL.100 Other 

studies have used 200 mg/dL and 250 mg/dL as benchmarks for DM classification.101 However, 

we have observed FBG exceeding 300 mg/dL in some control rats. Therefore it is important to 

evaluate other markers that can assess DM severity including serum creatinine, urinary albumin 

and polyuria.  

Polyuria, decreased serum creatinine and microalbuminuria are indicative of renal 

function.42 A model of diabetic nephropathy in mice showed elevated serum creatinine, with 

0.08-0.11 mg/dL classifying the normal range, with albumin:creatinine ratio >1000 mg/g.102 This 

dramatically exceeds ratios characterizing CKD in humans. There were no significant differences 

in serum creatinine concentrations found between groups and mean concentrations were below 

this normal range (0.501-0.519±0.0383 mg/dL). However, urinary creatinine and albumin 

concentrations are direct markers for impaired renal filtration and typically better standards to 



www.manaraa.com

	  
	  

41	  

use in CKD assessment.42 Urinary creatinine concentrations were depressed in DM rats, 

suggesting the perturbed clearance of this metabolite in the glomerulus. Polyuria and decreased 

urinary creatinine were evident in our study and both symptoms were alleviated in RS treated 

rats. 

In addition to these biomarkers, disruptions in vitamin D metabolism and methyl group 

metabolism are observed in diabetes. In our laboratory we have assessed the induction of key 

regulatory proteins GNMT, BHMT and cystathionine beta synthase (CBS) associated with 

diabetic nephropathy.59 Upregulation of these enzymes may be related to impaired homocysteine 

clearance by the proximal tubules and the subsequent rise in plasma homocysteine.3 

Transmethylation, transsulfuration and remethylation pathways in one-carbon metabolism are 

governed by homocysteine concentrations and the S-adenosylmethionine: S-

adenosylhomocysteine (SAM:SAH) ratio.61 Hyperhomocystenemia is a consequence of CKD 

and may be associated with the upregulation of these proteins and pathways. BHMT functions to 

remethylate methionine from homocysteine.60 In transmethylation, GNMT accepts and disposes 

methyl groups in the form of sarcosine.56 Transsulfuration enzymes CBS and γ-csytathione are 

also induced, allowing for the catabolism of homocysteine to cysteine.59 These mechanisms may 

help regulate methyl group supply and homocysteine in a diabetic state. However, increased 

catabolism of methyl groups via GNMT may lead to hypomethylation, as GNMT takes methyl 

groups from vital methyltransferases and impairs vital methylation reactions.   

 In this study, hepatic and renal GNMT activity were elevated and GNMT and BHMT 

mRNA abundance was markedly increased in DM rats. In our laboratory, administration of 

retinoic acid (RA), dexmathasone (DEX) and insulin has been shown to normalize the genomic 

expression of these proteins in DM rats. Insulin administration alleviated GNMT upregulation in 
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this diabetic model, suggesting the changes are diabetes-specific.6 Hormone insulin functions to 

bring blood glucose to homeostasis in diabetes.12 Therefore, normalization of GNMT could be 

attributed to the administration of insulin and/or the normalization of blood glucose. While 

previous studies have shown the prevention of diabetic nephropathy and associated 

complications using RS, we have observed these results in the presence and absence of 

hyperglycemia.55 Although this does not rule out the possibility of glucose as a hormonal 

modulator in one-carbon metabolism, it suggests another mechanism may be responsible.  

New developments in research have characterized the role of SCFA produced by RS in the 

colonic gut. SCFA’s are immunological mediators in the colon, peripheral tissues and 

adiopocytes. Acetate, butyrate and propionate exhibit an anti-inflammatory effect in the body in 

response to bacterial infections.88 Of particular interest is the role of butyrate as a mediator for 

TGF-β-1 (transforming growth factor-β-1), a profibric cytokine expressed during advanced renal 

disease and associated with renal fibrosis.103  

 

 

 

 

 

Figure 2.1: Renal fibrosis.104  

CKD is characterized by structural and functional changes to the renal tubules, ECM and 

glomerulus.3-5 Renal fibrosis occurs in the late stages of CKD and involves an inflammatory 

cascade that begins with an injury to the kidney. This stimulates the release of pro-inflammatory 

cytokines, which recruit macrophages and T cells for infiltration at the site of injury.  The 

activation of fibroblasts, mesangial cells and epithelial cells leads to the accumulation of 
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collagen, fibrinogen and other matrix components. Excessive accumulation in the extracellular 

matrix (ECM) leads to cross-linking, excessive scarring and loss of renal function.104 

 Cytokine TGF-β-1 and its associated similar to mothers against decapentaplegic (SMAD) 

receptors are upregulated in CKD. In healthy kidneys, TGF-β-1 is tightly regulated by SMAD 

antagonists, which include ski-related novel N (SnoN), Sloan-Kettering Institute (Ski) and TG-

interacting factor (TGIF). Recent studies have demonstrated low circulating levels of these 

antagonists in CKD, leading to amplified expression of this cytokine. Additionally, this cytokine 

is regulated via induction and post-translational modification.104 Potential modulators of TGF-β-

1 include elevated glucose, angiotensin II and butyrate. Together this potentiates glucose and RS 

in the form of butyrate, as hormonal and nutritional modulators in diabetes.  

 Mechanisms by which glucose mediates this pro-inflammatory cytokine involve a variety of 

reactions. AGEs associated with chronic hyperglycemia stimulate the production of ROS.1 

Circulating ROS activates protein kinase C (PKC), the hexosamine pathway, extracellular signal-

related kinase (ERK) pathway, p38 mitogen activated protein kinase (MAPK) pathway and TGF-

β-1 transcription factors. Specifically PKC and the hexosamine pathway are related to glucose-

stimulated TGF-β-1 synthesis.104 Interestingly, recent developments have highlighted butyrate in 

the mitigation of TGF-β-1 stimulated renal fibrosis by inhibiting MAPK and ERK pathways.103 

Taken together, these results have indicated that both glucose and RS are mediators in DM. 

Moreover, RS in the form of butyrate exhibits a protective effect in the kidneys of diabetic 

patients, preventing the progression of CKD and associated complications.  

  Collectively, our study demonstrated the prevention/attenuation of diabetic complications 

with the use of dietary RS. New developments in research have suggested butyrate to play an 

immunological role in in CKD as in inhibits several pathways related to renal fibrosis and TGF-
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β-1 synthesis. Because RS supplementation attenuates hyperglycemia in DM rats, the production 

of butyrate by RS directly and indirectly mediates these inflammatory processes characteristic in 

DM. The protective effect of RS in the kidneys thus prevents a multitude of complications 

including weight loss, polyuria, hyperfiltration of proteins and nutrients and altered clearance of 

metabolites. In this study, we have demonstrated the normalization of key regulatory proteins in 

methyl group metabolism, speculating RS as an indirect modulator in one-carbon metabolism. 
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Table 2.2 Real-time RT-PCR primers 

Target     Primers 
 
GNMT      F*:  ACA ACA AAG CCC ACA TGG TAA CCC 
       R*:  AGC CGA AAC TTA CTG AAG CCA GGA 
 
BHMT      F:  ATC TGG GCA GAA GGT CAA TGA AGC 
       R:  TGA CTC ACA CCT CCT  GCA ACC AAT 
 
18S       F:  GAA CCA GAG CGA AAG CAT TTG CCA 
       R:   ATG GTC GGA ACT ACG ACG GTA TCT 
*F represents forward primer, R represents reverse primer 
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Figure 2.2: Creatinine concentration in urine (A) and serum (B). RS normalized urinary 
creatinine concentrations in DM rats. No statistical differences were observed between DM-RS 
and CS groups (p=0.434). 
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Figure 2.3: RS diet has no effect on serum albumin concentrations in DM rats. There were 
no significant differences in serum albumin concentrations between groups (p=0.384)	  
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Figure 2.4: RS significantly reduces hyperglycemia associated with DM. Elevated blood 
glucose was observed in DM rats at 9 wk 140% compared to blood glucose in control rats.  
Hyperglycemia was not prevented in RS rats, however there was a statistically significant 32% 
reduction in blood glucose compared to the DM-CS group (p=0.008).	  
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Table 2.2: RS diet significantly reduces weight loss associated with DM after STZ injection 
 

 

 
Total Weight Gain to STZ (42 d), g 
 

Total Weight Gain after STZ (21 d), g 
 

Control 
 

202±6.7a 

 
30.0±2.4a 

 

DM-CS 
 

208±4.1a 

 
-62.4±7.6b 

 

DM-RS-37 
 
P Value 
 

212±5.1a 

 

0.420 
 

-1.4±7.1c 

 

                                     <0.001 
 

Data shown as group mean ±SE; letters denote significant differences between groups (p<0.05) 

Time (d)

0 10 20 30 40 50 60 70

C
um

ul
at

iv
eW

ei
gh

t G
ai

n 
(g

)

0

50

100

150

200

250

300

CS-0
DM-CS-0
Day vs DM-RS 

a

b

c

 
Figure 2.5: Cumulative weight loss/gain. . No statistical difference in cumulative weight gain 
observed between groups prior to STZ-injection. DM-CS rats lost 27% of total body weight 
following STZ-injection, while control rats gained 11% of total body weight. DM-RS rats gained 
1% of total body weight following STZ-injection. Data shown as group mean ±SE; letters 
indicate significant differences between groups (p<0.05); dotted lines indicate diet transition and 
STZ injection at 14 d and 43 d, respectively. 
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Figure 2.6: RS prevents polyuria in DM rats. Following a 12-hr fasting period, there was a 
53% reduction in urinary volume of DM-RS rats (6.7±1.9 mL) relative to DM-CS rats (12.7±2.2 
mL; p=0.022). No statistically significant differences were observed between the CS and DM-RS 
group (p=0.533) 
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Table 2.3: RS diet normalizes renal GNMT activity and attenuates increased hepatic GNMT 

activity associated with the diabetic condition 

 

Renal GNMT Activity, pmol/min*mg 
 

Liver GNMT Activity, pmol/min•mg 
 

CS 
 

5.1±0.7a 

 
23.6±1.1a 

 

DM-CS 
 

9.1±0.9b 

 
29.2±1.5b 

 

DM-RS-37 
 
P Value 
 

7.0±0.4a 

 

0.027* 
 

26.4±1.3a,b 

 

0.027* 
 

Data are means ±SE (n=x); letters denote significant differences between groups (p<0.05) 
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Figure 2.7: Hepatic and renal GNMT activity. GNMT activity was elevated DM liver and 
kidney tissues and significant differences were observed between all groups (p=0.027). GNMT 
activity was not normalized by RS in the liver. However, Renal GNMT activity in DM groups 
was significantly reduced (23%) by the RS diet (p=0.039). Data shown as group mean ±SE; 
letters indicate significant differences between groups (p<0.05)  
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Table 2.4: Hepatic mRNA abundance of one-carbon metabolism enzymes in diabetic rats fed CS 
and RS diets relative to control rats.  

 

Hepatic GNMT mRNA Relative 
Expression 

 

Hepatic BHMT mRNA Relative 
Expression 

 
CS 
 

1.0±0.1a 

 
1.1±0.2a 

 

DM-CS 
 

3.9±2.8a 

 
2.3±0.7a 

 

DM-RS-37 
 
P Value 
 

1.8±0.9a 

 

0.307 
 

1.5±0.3a 

 

0.739 
 

Data are means ±SE (n=x); letters denote significant differences between groups (p<0.05) 
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Figure 2.8: Hepatic GNMT and BHMT mRNA abundance relative to the control. There 
were no statistically significant reductions in GNMT and BHMT mRNA expression with RS 
administration; letters indicate significant differences between groups (p<0.05) 
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General Conclusion 

Type 1 diabetes mellitus (T1DM) is an autoimmune disease that manifests from a 

combination of genetic, epigenetic and environmental factors. This disease is characterized by 

insulin deficiency, impaired carbohydrate metabolism and subsequent hyperglycemia. Chronic 

hyperglycemia associated with uncontrolled DM causes progression of microvascular and 

macrovascular complications characteristic of the disease. Advanced glycation end products 

(AGEs) associated with hyperglycemia infiltrate microvascular tissues, ultimately leading to 

vascular disease of the nervous system, eyes and kidneys.1  

Diabetic nephropathy is one of the most common complications associated with DM and the 

leading cause of chronic kidney disease.2 Approximately, 40% of diabetic individuals progress 

from diabetic nephropathy to CKD and end stage renal failure (ESRF) during their lifetime.41 

CKD is associated with numerous pathologies including cardiovascular disease (CVD), vitamin 

D deficiency and impaired methyl group metabolism. There are several mechanisms that link 

CKD and CVD including hypertension, endothelial dysfunction and hyperhomocystenemia.5 

Hypertension contributes to the progression of CKD and is also a consequence of the 

disease. Renal dysfunction causes hypertension in diabetic patients by 1) disrupting sodium and 

volume concentrations that are correlated with blood pressure 2) causing autonomic 

dysregulation, which leads to increased peripheral resistance, blood volume, cardiac output and 

subsequently increased blood pressure and 3) activating the renin-angiotensin system (RAS) 

which may lead to an inappropriate rise in blood pressure.105 RAS activation also contributes to 

endothelial dysfunction and the development of CVD by activating Angiotensin II. Angiotensin 

II and circulating AGEs stimulate the production of inflammatory factors and reactive oxygen 

species (ROS), which directly contribute to endothelial dysfunction and atherosclerosis.5,46  
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Figure 2.9: Chronic kidney disease and hypertension contribute to cardiovascular disease risk106 

 

Structural damage to the nephron paired with endothelial dysfunction leads to increased 

vascular permeability and impaired filtration of proteins and many other nutrients.5 Loss of renal 

function has been linked to vitamin D deficiency and hyperhomocystenemia.2,5,54 Structural 

damage to the glomerulus causes hyperfiltration of nutrients including vitamin D binding protein 

(DBP), 25 hydroxyvitamin D3 (25(OH)D3) and vitamin D endocytic receptors megalin, cubilin 

and dab2.2,54 Vitamin D deficiency can lead to anemia, osteoporosis, cancer and autoimmune 

diseases.49 

Impaired glomerular filtration may also cause decreased clearance of nutrients including 

homocysteine, a key metabolite in methyl group metabolism. Decreased homocysteine clearance 

can lead to the subsequent rise in plasma homocysteine levels. Hyperhomocystenemia is an 

independent risk factor for CVD and is highly correlated with declining glomerular filtration rate 
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(GFR) in severe CKD. Anomalous upregulation of pathways and proteins in one-carbon 

metabolism are also associated with severe CKD. Researchers postulate these alterations as 

compensatory mechanisms for changes in homocysteine concentrations. 3 Induction of key 

proteins glycine-N-methyltransferase (GNMT) and betaine-homocysteine-metyltransferase 

(BHMT) in CKD can lead to methyl group wastage and subsequent hypomethylation, which is 

associated with many adverse health conditions including cancer, neurological disorders, birth 

defects and CVD. 57,58 

Diabetes mellitus (DM) affects approximately 180 million individuals nationally, with 5% 

of individuals living with T1DM.11 Uncontrolled hyperglycemia in DM can prime the 

development of many other diseases including CKD, vitamin D deficiency, cancer, neurological 

disorders and CVD. Therefore, prevention and treatment of this disease is imperative for optimal 

quality of life and longevity in diabetic patients. Many therapeutic dietary strategies have been 

developed and used in research to determine their affect in DM control including high fiber diets, 

lower glycemic index diets, prebiotics and probiotics.107 Resistant starch (RS) is a dietary fiber 

that resists digestion, bypasses the small intestine and undergoes fermentation in the colonic 

gut.85 RS consumption slows digestion and absorption of glucose, acting as a lower glycemic 

agent to prevent dramatic increases in post-prandial blood glucose.84 Attenuated hyperglycemia 

associated with RS consumption may possibly reduce the development of comorbidities related 

to uncontrolled DM. 

 Previous research in conjunction with this study has demonstrated the ability of RS to 

attenuate hyperglycemia and therefore prevent diabetic complications and abnormalities 

associated with vitamin D metabolism and methyl group metabolism.55 Proposed mechanisms 

for this phenomenon include the normalization of blood glucose and/or the production of 
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butyrate by RS in the colon, which acts as an immunological modulator in CKD.6,88 The 

protective effect of RS in diabetes and other pathological conditions presents many positive 

implications in health and disease.89,90 

In addition to promoting blood glucose homeostasis, RS has been shown to 1) improve 

satiety due to a slower rate of digestion 2) increase lipid oxidation and energy expenditure 3) 

improve colonic mucosal integrity and reduce inflammation via immunological effects exerted 

by butyrate and other SCFA’s produced during RS fermentation and 4) improve insulin 

sensitivity.108 With these health benefits, RS may be used as a treatment for various disease 

states such as T2DM, colon cancer, CVD, inflammatory gastrointestinal conditions and 

autoimmune diseases. RS has a dramatic impact on the gut microflora by promoting microbiome 

activity and diversity and producing SCFA’s, both linked to disease prevention. Researchers are 

working to better understand how RS and other carbohydrates influence the gut microflora. The 

mechanism behind these physiological benefits may be directly attributed to specific bacterial 

populations produced by RS.107  

There are many risk factors associated with T1DM including age, family history, genetic 

susceptibility and environmental factors such as vitamin D deficiency and viruses.19 More 

recently, research has geared toward understanding the role of the immune system in disease 

development as it relates to the gut microbiome. T1DM is associated with increased intestinal 

permeability, gut leakiness and altered intestinal immunity.109 Prebiotics and probiotics have 

immunomodulatory properties in disease, promoting optimal microbial diversity and exerting 

anti-inflammatory effects in the body.110  

The gut microbiome hosts a plethora of bacteria, capable of producing both pro- and anti-

inflammatory responses. Therefore, the composition of the microflora may be inherently related 
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to immune system functioning and disease development.111 In a recent study, researchers 

performed a gut microbiome analysis in non-obese diabetic rats, finding low abundance of 

healthy bacteria and decreased diversity of the microbiome. The bacterial strains observed in this 

study differed significantly compared to the gut composition of control rats. Control rats 

possessed probiotic bacterial species that have been shown to promote gut integrity and prevent 

autoimmunity such as Lactobacillus and Bifidobacterium.112 Another study investigated the gut 

microbiome in genetically susceptible children, whom possessed at least two islet autoantibodies. 

Similar results were obtained in this human model including 1) comprised gut integrity 2) low 

bacterial diversity 3) gut instability, defined as decreased similarity between gut microflora in 

autoimmune children and 4) altered ratio of Firmicutes to Bacteroidetes, the most notable 

differences between control and autoimmune microbiomes.112  

The mechanisms that link T1DM with the autoimmune microbiome are variable. Some 

researchers suggest that these bacteria may be more highly exposed to foreign substances, given 

the increased gut permeability and leakiness associated with the disease. Interaction between the 

autoimmune gut microbiome and pathogenic GI bacteria can result in altered T cell regulation 

and increased production of pro-inflammatory factors, preceding the autoimmune event that 

characterizes T1DM.109 These research studies have classified the autoimmune microbiome in 

T1DM and have identified plausible mechanisms that contribute to disease development.  

Several studies have investigated the use of prebiotics and probiotics as a means to 

normalize the gut microbiome and prevent occurrence of disease. In an NOD model, researchers 

observed reduced insulinitis, beta cell destruction and decreased incidence of T1DM with 

probiotic administration.113 Additionally, prebiotics such as RS have been shown to positively 

alter the microbial composition of the gut, promoting gut integrity and preventing bacterial 
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invasion.114,115 These results suggest that probiotics and prebiotics may be optimal dietary 

strategies in the treatment and prevention of various pathologies including diabetes, obesity and 

gastrointestinal disorders.   

Collectively, these research findings suggest the microbiome and immune system to be 

critical epigenetic factors in the development of T1DM. 116 This provides positive implications 

for administration of probiotics and prebiotics as a means to normalize the gut microbiome and 

prevent the onset of T1DM in susceptible individuals. Overall, research suggests that RS may be 

implemented as a therapeutic dietary aid for prevention and treatment of T1DM.  
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